DUALITY FOR CONSTRAINED ROBUST SUM OPTIMIZATION PROBLEMS

N. Dinh¹, M.A. Goberna², D.H. Long^{3,4}, M. Volle⁶

¹International University, VNU-HCM ²University of Alicante, Spain ³University of Science, VNU-HCM ⁴Tien Giang University ⁵Avignon University, France ndinh@hcmiu.edu.vn, mgoberna@ua.es, danghailong@tgu.edu.vn, michel.volle@univ-avignon.fr

Abstract

Given an infinite family of extended real-valued functions f_i , $i \in I$, and a family \mathcal{H} of nonempty finite subsets of I, the \mathcal{H} -partial robust sum of f_i , $i \in I$, is the supremum, for $J \in \mathcal{H}$, of the finite sums $\sum_{j \in J} f_j$. These infinite sums arise in a natural way in location problems as well as in functional approximation problems, and include as particular cases the well-known sup function and the so-called robust sum function, corresponding to the set \mathcal{H} of all nonempty finite subsets of I, whose unconstrained minimization was analyzed in previous papers of three of the authors [DOI: 10.1007/s11228-019-00515-2 and DOI: 10.1007/s00245-019-09596-9]. In this paper, we provide ordinary and stable zero duality gap and strong duality theorems for the minimization of a given \mathcal{H} -partial robust sum under constraints, as well as closedness and convex criteria for the formulas on the subdifferential of the sup-function.

Key words: partial robust sums, robust sum optimization problems, stable zero duality gap