SOME PROPERTIES OF LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

TRAN TUAN NAM 1,2 , NGUYEN MINH TRI $^{*2,3},$ AND NGUYEN THANH NAM 4

ABSTRACT. We introduce the concept of (I, J)-coweakly Laskerian modules and study their properties concerning to local cohomology modules with respect to a pair of ideals. We also study some properties of the local cohomology modules with support contained in Max(R) and the relationships on the weakly artinianness of the modules $H_{I,J}^i(M)$ and $H_I^i(M)$.

Key words: Local cohomology, weakly Laskerian, weakly artinian 2010 Mathematics subject classification: 13D45 Local cohomology.

1. INTRODUCTION

Throughout the paper, R is commutative Noetherian ring with identity. Let I, J be ideals of R and M an R-module.

In 2009, Takahashi, Yoshino and Yoshizawa ([10]) introduced local cohomology modules with respect to a pair of ideals which is an extension of the local cohomology modules of Grothendieck. The submodule $\Gamma_{I,J}(M)$ of M is defined as

$$\Gamma_{I,J}(M) = \{ x \in M \mid I^n x \subseteq Jx \text{ for some } n \ge 0 \}.$$

The functor $\Gamma_{I,J}$ is left exact, covariant, *R*-linear from the category of *R*-modules to itself. For each $i \geq 0$, the *i*-th right derived functor of $\Gamma_{I,J}$ is called the *i*-th local cohomology functor with respect to (I, J) and denoted by $H^i_{I,J}$. Note that if J = 0, then $H^i_{I,J}$ coincides with Grothendieck's local cohomology functor H^i_I .

In 2014, Abbasi, H. Roshan-Shekalguorabia and Rasht in [1] introduced a new Serre class of *R*-modules which contains the class of weakly

^{*} Corresponding author.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.04-2018.304.

Laskerian modules and the class of *I*-minimax *R*-modules. The authors defined *M* to be an *I*-weakly Laskerian *R*-module if for any submodule *N* of *M* the set $\operatorname{Ass}_R(\Gamma_I(M/N))$ is finite, and give some properties of *I*-weakly Laskerian modules. They proved that if *M* is an *I*-weakly Laskerian *R*-module and *t* is a non-negative integer such that $H_I^i(M)$ is *I*-weakly Laskerian for all i < t, then set of associated primes of $H_I^t(M)$ is finite.

The purpose of this paper is to introduce the concept of (I, J)coweakly Laskerian modules and study some their properties concerning to local cohomology modules with respect to a pair of ideals. Then we have a result that relates to the finiteness of the associated primes of $H^i_{I,J}(M)$. We also have some results on the weakly artinianness of the modules $H^i_{I,J}(M)$.

The organization of the paper is as follows.

In the next Section, we introduce the concept of (I, J)-coweakly Laskerian modules. An *R*-module *M* is called an (I, J)-coweakly Laskerian *R*-module if $\operatorname{Supp}_R(M) \subseteq W(I, J)$ and $\operatorname{Ext}^i_R(R/I, M)$ is *J*-weakly Laskerian for all $i \geq 0$, where

$$W(I,J) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I^n \subseteq \mathfrak{p} + J \text{ for some } n \ge 0 \}.$$

We will see in Theorem 2.7 that if $\operatorname{Ext}_{R}^{i}(R/I, M)$ is *J*-weakly Laskerian for all $i \geq 0$ and *n* is a non-negative integer such that $H_{I,J}^{i}(M)$ is (I, J)-coweakly Laskerian for all $i \neq n$, then $H_{I,J}^{n}(M)$ is (I, J)-coweakly Laskerian. Theorem 2.9 shows that if $H_{I,J}^{i}(M)$ is (I, J)-coweakly Laskerian for all i < n and $\operatorname{Ext}_{R}^{n}(R/I, M)$ is *J*-weakly Laskerian, then $\operatorname{Hom}_{R}(R/I, H_{I,J}^{n}(M))$ is *J*-weakly Laskerian. As a consequence of Theorem 2.9, we obtain a finite result of the set $\operatorname{Ass}_{R}(H_{I,J}^{n}(M)/JH_{I,J}^{n}(M))$ (Corollary 2.11).

The last Section deals with the modules which have support contained in Max(R). An R-module M is weakly artinian if Supp(M) contains only finitely many maximal ideals (see [5]). This is an extension of artinian modules and it has a close relation to weakly Laskerian modules. Theorem 3.4 says that $H^d_{I,J}(M)/JH^d_{I,J}(M)$ is weakly artinian if Mis a weakly Laskerian R-module with $d = \dim M$. Moreover, if (R, \mathfrak{m}) is a local ring, then $H^d_{I,J}(M)$ is artinian or Supp($H^d_{I,J}(M)$) is finite. A relationship between the weakly artinianness of $H^i_{I,J}(M)$ and $H^i_I(M)$ will be shown in Theorem 3.7. This section is closed by Theorem 3.11 which shows that if M is a weakly Laskerian R-module, then

$$\inf\{w - f - \operatorname{depth}(\mathfrak{a}, M) \mid \mathfrak{a} \in W(I, J)\} = \inf\{i \mid H^{i}_{I,J}(M) \text{ is not weakly artinian}\}$$
$$= \inf\{i \mid H^{i}_{I,J}(M) \not\cong H^{i}_{\mathfrak{m},J}(M)\}$$
$$= \inf\{i \mid H^{i}_{I,J}(M) \not\cong H^{i}_{\mathfrak{m}}(M)\}.$$

2. On coweakly Laskerian modules

We first recall the definition and some properties of *J*-weakly Laskerian modules.

Definition 2.1. [1, 2.1] An *R*-module *M* is said to be *J*-weakly Laskerian if the set of associated primes of the *J*-torsion submodule of any quotient module of *M* is finite; i.e., for any submodule *N* of *M*, the set $\operatorname{Ass}_R(\Gamma_J(M/N))$ is finite.

Lemma 2.2. [1] The following statements are true:

- (i) The class of J-weakly Laskerian modules is closed under taking submodules, quotients and extensions, i.e., it is a Serre subcategory of the category of all R-modules. In particular, any finite sum of J-weakly Laskerian modules is J-weakly Laskerian.
- (ii) Let M and N be two R-modules. If M is finitely generated and N is J-weakly Laskerian, then $\operatorname{Ext}_{R}^{i}(M, N)$ and $\operatorname{Tor}_{i}^{R}(M, N)$ are J-weakly Laskerian for all $i \geq 0$.
- (iii) If M is a J-weakly Laskerian R-module, then $\Gamma_J(M)$ is weakly Laskerian.

Definition 2.3. An *R*-module *M* is said to be (I, J)-coweakly Laskerian if $\text{Supp}(M) \subseteq W(I, J)$ and $\text{Ext}^{i}_{R}(R/I, M)$ is *J*-weakly Laskerian for every $i \geq 0$.

The class of (I, J)-coweakly Laskerian modules is larger than the class of (I, J)-cofinite modules.

Here are some elementary properties of (I, J)-coweakly Laskerian modules.

Proposition 2.4. Let $0 \to L \to M \to N \to 0$ be a short exact sequence. If there are two modules which are (I, J)-coweakly Laskerian, then so is the third.

Proof. The short exact sequence $0 \to L \to M \to N \to 0$ gives rise to a long exact squence

 $\cdots \to \operatorname{Ext}^{i}_{R}(R/I, L) \to \operatorname{Ext}^{i}_{R}(R/I, M) \to \operatorname{Ext}^{i}_{R}(R/I, N) \to \cdots$

Note that $\operatorname{Supp}_R(M) = \operatorname{Supp}_R(L) \cup \operatorname{Supp}_R(N)$. The assertion follows from [1, 2.2].

Proposition 2.5. Let M be an R-module and t a non-negative integer such that $H^i_{I,J}(M)$ is (I, J)-coweakly Laskerian for all $i \leq t$. Then $\operatorname{Ext}^i_R(R/I, M)$ is J-weakly Laskerian for all $i \leq t$.

Proof. The proof is by induction on t. When t = 0, since $H^0_{I,J}(M)$ is (I, J)-coweakly Laskerian, $\operatorname{Hom}_R(R/I, H^0_{I,J}(M))$ is J-weakly Laskerian. The claim in this case follows from the isomorphism

$$\operatorname{Hom}_{R}(R/I, H^{0}_{I,J}(M)) \cong \operatorname{Hom}_{R}(R/I, M).$$

Let t > 0, the short exact sequence

$$0 \to \Gamma_{I,J}(M) \to M \to M/\Gamma_{I,J}(M) \to 0$$

induces a long exact sequence

 $\cdots \operatorname{Ext}_{R}^{i}(R/I, \Gamma_{I,J}(M)) \to \operatorname{Ext}_{R}^{i}(R/I, M) \to \operatorname{Ext}_{R}^{i}(R/I, M/\Gamma_{I,J}(M)) \cdots .$

Since $\Gamma_{I,J}(M)$ is an (I, J)-coweakly Laskerian *R*-module,

 $\operatorname{Ext}_{R}^{i}(R/I, \Gamma_{I,J}(M))$ is *J*-weakly Laskerian for all $i \geq 0$. The proof is complete by showing that $\operatorname{Ext}_{R}^{i}(R/I, M/\Gamma_{I,J}(M))$ is *J*-weakly Laskerian for all $i \leq t$. Note that $H_{I,J}^{i}(M) \cong H_{I,J}^{i}(M/\Gamma_{I,J}(M))$ for all i > 0. Let $\overline{M} = M/\Gamma_{I,J}(M)$, *E* be an injective hull of \overline{M} and $L = E/\overline{M}$. From the short exact sequence

$$0 \to \overline{M} \to E \to L \to 0$$

there are isomorphisms

$$H^i_{I,J}(L) \cong H^{i+1}_{I,J}(\overline{M})$$
 and $\operatorname{Ext}^i_R(R/I,L) \cong \operatorname{Ext}^{i+1}_R(R/I,\overline{M})$

for all $i \geq 0$. By the assumption, $H^i_{I,J}(L)$ is (I, J)-coweakly Laskerian for all $i \leq t - 1$. It follows from the inductive hypothesis that $\operatorname{Ext}^i_R(R/I, L)$ is *J*-weakly Laskerian for all $i \leq t - 1$. This implies that $\operatorname{Ext}^i_R(R/I, \overline{M})$ is *J*-weakly Laskerian for all $i \leq t$.

Corollary 2.6. Let M be an R-module such that $H^i_{I,J}(M)$ is (I, J)coweakly Laskerian for all $i \geq 0$. Then $\operatorname{Ext}^i_R(R/I, M)$ is J-weakly
Laskerian for all $i \geq 0$.

We will show some conditions such that the module $H^i_{I,J}(M)$ is (I, J)-coweakly Laskerian for all $i \ge 0$. The following result is an extension of [7, 2.9].

Theorem 2.7. Let M be an R-module such that $\operatorname{Ext}_{R}^{i}(R/I, M)$ is J-weakly Laskerian for all $i \geq 0$. If n is a non-negative integer such that $H_{I,J}^{i}(M)$ is (I, J)-coweakly Laskerian for all $i \neq n$, then $H_{I,J}^{n}(M)$ is (I, J)-coweakly Laskerian.

Proof. We use induction on n. When n = 0 and $\overline{M} = M/\Gamma_{I,J}(M)$. Since $H^i_{I,J}(M) \cong H^i_{I,J}(\overline{M})$ for all i > 0 and $\Gamma_{I,J}(\overline{M}) = 0$, it follows from the hypothesis that $H^i_{I,J}(\overline{M})$ is (I, J)-coweakly Laskerian for all $i \ge 0$. By

2.6, $\operatorname{Ext}_{R}^{i}(R/I, M)$ is *J*-weakly Laskerian for all $i \geq 0$. Combining the long exact sequence

$$\cdots \operatorname{Ext}^{i}_{R}(R/I, \Gamma_{I,J}(M)) \to \operatorname{Ext}^{i}_{R}(R/I, M) \to \operatorname{Ext}^{i}_{R}(R/I, \overline{M}) \cdots$$

with the assumption, we can conclude that $\operatorname{Ext}_{R}^{i}(R/I, H_{I,J}^{0}(M))$ is *J*-weakly Laskerian for all $i \geq 0$. Hence $H_{I,J}^{0}(M)$ is (I, J)-coweakly Laskerian.

Now let n > 0 and the statement is true for all i < n. Let E be an injective hull of \overline{M} and $L = E/\overline{M}$. From the short exact sequence

$$0 \to \overline{M} \to E \to L \to 0$$

there are isomorphisms

$$H^i_{I,J}(L) \cong H^{i+1}_{I,J}(\overline{M}) \text{ and } \operatorname{Ext}^i_R(R/I,L) \cong \operatorname{Ext}^{i+1}_R(R/I,\overline{M})$$

for all $i \geq 0$. By the assumption, $H^i_{I,J}(L)$ is (I, J)-coweakly Laskerian for all $i \neq n-1$ and $\operatorname{Ext}^i_R(R/I, L)$ is *J*-weakly Laskerian for all $i \geq 0$. It follows from the inductive hypothesis that $H^{n-1}_{I,J}(L)$ is (I, J)-coweakly Laskerian. Therefore $H^n_{I,J}(\overline{M})$ is (I, J)-coweakly Laskerian and the proof is complete.

Corollary 2.8. Let I be a principal ideal of R and M a J-weakly Laskerian R-module. Then $H^i_{I,J}(M)$ is (I, J)-coweakly Laskerian for all $i \geq 0$.

Proof. It follows from [10, 4.10] that $H^i_{I,J}(M) = 0$ for all i > 1. By [1, 2.3 (ii)], $\operatorname{Ext}^i_R(R/I, M)$ is *J*-weakly Laskerian for all $i \ge 0$. The conclusion follows from 2.7.

Theorem 2.9. Let M be an R-module and n a non-negative integer such that $H^i_{I,J}(M)$ is (I, J)-coweakly Laskerian for all i < n.

- (i) If $\operatorname{Ext}_{R}^{n}(R/I, M)$ is J-weakly Laskerian, then $\operatorname{Hom}_{R}(R/I, H_{I,J}^{n}(M))$ is J-weakly Laskerian.
- (ii) If $\operatorname{Ext}_{R}^{n+1}(R/I, M)$ is a J-weakly Laskerian R-module, then $\operatorname{Ext}_{R}^{1}(R/I, H_{I,J}^{n}(M))$ is J-weakly Laskerian.
- (iii) If $\operatorname{Ext}_{R}^{n+1}(R/I, M)$ and $\operatorname{Ext}_{R}^{n+2}(R/I, M)$ are J-weakly Laskerian, then $\operatorname{Hom}_{R}(R/I, H_{I,J}^{n+1}(M))$ is J-weakly Laskerian if and only if $\operatorname{Ext}_{R}^{2}(R/I, H_{I,J}^{n}(M))$ is J-weakly Laskerian.

Proof. Let $F = \text{Hom}_R(R/I, -)$ and $G = \Gamma_{I,J}(-)$ be functors from the category of *R*-modules to itself. For each *R*-module *M*, we have $FG(M) = \text{Hom}_R(R/I, M)$. If *E* is an injective *R*-module, then $R^iF(GE) = 0$ for all i > 0. By [8, 10.47] we have a spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(R/I, H^q_{I,J}(M)) \Rightarrow \operatorname{Ext}_R^{p+q}(R/I, M).$$

By the assumption, $E_2^{p,q}$ is *J*-weakly Laskerian for all $p \ge 0, q < n$. Let *t* be a non-negative integer, there is a filtration Φ of submodules of $H^t = \operatorname{Ext}_R^t(R/I, M)$

$$0 = \Phi^{t+1} H^t \subseteq \Phi^t H^t \subseteq \dots \subseteq \Phi^1 H^t \subseteq \Phi^0 H^t = H^t$$

such that

$$E_{\infty}^{i,t-i} \cong \Phi^i H^t / \Phi^{i+1} H^t$$

for all $0 \leq i \leq t$.

(i) Since $\overline{H^n} = \operatorname{Ext}_R^n(R/I, M)$ is *J*-weakly Laskerian, $E_{\infty}^{i,n-i}$ is *J*-weakly Laskerian for all $0 \le i \le n$. On the other hand, we have

$$E_{\infty}^{0,n} = E_{n+1}^{0,n} = \ker(E_n^{0,n} \to E_n^{n,1}).$$

Since $E_n^{n,1}$ is a subquotient of $E_2^{n,1}$, by the hypothesis $E_n^{n,1}$ is *J*-weakly Laskerian. This implies that $E_n^{0,n}$ is *J*-weakly Laskerian. By the same arguments, we can conclude that $E_{n-1}^{0,n}, E_{n-2}^{0,n}, \ldots, E_2^{0,n}$ are *J*-weakly Laskerian. In particular, $\operatorname{Hom}_R(R/I, H_{I,J}^n(M)) = E_2^{0,n}$ is *J*-weakly Laskerian, as required.

(ii) We consider the following spectral homomorphisms

$$0 \to E_r^{1,n} \to E_r^{1+r,n-r+1}$$

for all $r \geq 2$. We see that $E_{n+2}^{1,n} = E_{n+3}^{1,n} = \ldots = E_{\infty}^{1,n}$ and $E_{\infty}^{1,n}$ is a subquotient of $\operatorname{Ext}_{R}^{n+1}(R/I, M)$. By the hypothesis, $E_{n+2}^{1,n}$ and $E_{r}^{r+1,n-r+1}$ are *J*-weakly Laskerian for all $r \geq 2$. On the other hand, since $E_{r+1}^{1,n} = \ker(E_{r}^{1,n} \to E_{r}^{r+1,n-r+1})$, it follows that $E_{r}^{1,n}$ is *J*-weakly Laskerian for all $r \geq 2$.

(iii) We consider the following spectral homomorphisms

$$0 \to E_2^{0,n+1} \xrightarrow{d_2^{0,n+1}} E_2^{2,n} \xrightarrow{d_2^{2,n}} E_2^{4,n-1}$$

and

$$0 \to E_r^{2,n} \xrightarrow{d_r^{2,n}} E_r^{r+2,n-r+1}$$

for all $r \geq 3$. Note that $E_{n+2}^{2,n} = E_{n+3}^{2,n} = \ldots = E_{\infty}^{2,n} \cong \Phi^2 H^{n+2} / \Phi^3 H^{n+2}$. Moreover, by the hypothesis $H^{n+2} = \operatorname{Ext}_R^{n+2}(R/I, M)$ and $E_r^{r+2,n-r+1}$ are *J*-weakly Laskerian for all $r \geq 3$. This implies that $E_3^{2,n}$ *J*-weakly Laskerian. We see that $E_2^{2,n}$ is *J*-weakly Laskerian if and only if ker $d_2^{2,n}$ is *J*-weakly Laskerian. Since $E_3^{2,n} = \ker d_2^{2,n} / \operatorname{Im} d_2^{0,n+1}$, it follows that $\ker d_2^{2,n}$ is *J*-weakly Laskerian if and only if $E_2^{0,n+1}$ is *J*-weakly Laskerian, and the proof is complete. **Theorem 2.10.** Let M be a J-weakly Laskerian R-module and na non-negative integer such that $H^i_{I,J}(M)$ is (I, J)-coweakly Laskerian for all i < n. Assume that N is a J-weakly Laskerian submodule of $H^n_{I,J}(M)$ such that $\operatorname{Ext}^1_R(R/I, N)$ is J-weakly Laskerian. Then $\operatorname{Hom}_R(R/I, H^n_{I,J}(M)/N)$ is J-weakly Laskerian.

Proof. The short exact sequence

$$0 \to N \to H^n_{I,J}(M) \to H^n_{I,J}(M)/N \to 0$$

induces an exact sequence

 $\operatorname{Hom}_R(R/I, H^n_{L,I}(M)) \to \operatorname{Hom}_R(R/I, H^n_{L,I}(M)/N) \to \operatorname{Ext}^1_R(R/I, N).$

By the assumption and 2.9, it follows that $\operatorname{Hom}_R(R/I, H^n_{I,J}(M)/N)$ is *J*-weakly Laskerian and the proof is complete.

We now have a result about the finiteness of the set $\operatorname{Ass}_R(H^n_{I,I}(M)/JH^n_{I,I}(M)).$

Corollary 2.11. Let M be a J-weakly Laskerian R-module and n a non-negative integer such that $H^i_{I,J}(M)$ is (I, J)-coweakly Laskerian for all i < n. If $JH^n_{I,J}(M)$ is a J-weakly Laskerian R-module, then the set $Ass_R(H^n_{I,J}(M)/JH^n_{I,J}(M))$ is finite.

Proof. It follows from 2.10 that $\operatorname{Hom}_R(R/I, H^n_{I,J}(M)/JH^n_{I,J}(M))$ is weakly Laskerian. Note that $H^n_{I,J}(M)/JH^n_{I,J}(M)$ is an *I*-torsion *R*-module. Consequently,

 $\operatorname{Ass}_{R}(H^{n}_{I,J}(M)/JH^{n}_{I,J}(M)) = \operatorname{Ass}_{R}(\operatorname{Hom}_{R}(R/I, H^{n}_{I,J}(M)/JH^{n}_{I,J}(M)))$ a finite set. \Box

3. The weakly artinianness of local cohomology modules

We begin by recalling the definition of weakly artinian modules. An R-module M is said to be weakly artinian if $E_R(M)$, its injective envelope, can be written as $E_R(M) = \bigoplus_{i=1}^n E_R(R/\mathfrak{m}_i)^{\mu_0(\mathfrak{m}_i;M)}$, where $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ are maximal ideals of R. It follows from [5, 2.3 (a)] that M is weakly artinian if and only if $\operatorname{Supp}(M)$ consists of finitely many maximal ideals. All artinian modules are weakly artinian modules. The class of weakly artinian modules is a Serre subcategory of the category of R-modules. It should be mentioned that M is weakly artinian if and only if M is weakly Laskerian and $\operatorname{Supp}(M)$ consists of maximal ideals ([5, 2.3]).

An *R*-module *M* is called *I*-torsion-free if $\Gamma_I(M) = 0$. It is wellknown that a finitely generated *R*-module *M* is *I*-torsion-free if and only if I contains a non-zerodivisor on M ([2, 2.1.1(ii)]). In the following lemma we give a similar property for weakly Laskerian R-modules.

Lemma 3.1. Let I be an ideal of R and M a weakly Laskerian Rmodule. Then M is an I-torsion-free R-module if and only if there is an element $x \in I$ which is M-regular.

Proof. The proof is similar to [2, 2.1.1(ii)], note that the set Ass(M) is finite.

We have a result on the weakly artinianness of local cohomology modules with respect to a pair of ideals.

Proposition 3.2. Let M be a weakly artinian R-module. Then $H^i_{I,J}(M)$ is weakly artinian for all $i \ge 0$.

Proof. By the hypothesis, we have dim M = 0 hence $H^i_{I,J}(M) = 0$ for all i > 0. It follows from [5, 2.3 (c)] that $H^0_{I,J}(M)$ is weakly artinian, which completes the proof.

It is well-known that if (R, \mathfrak{m}) is a local ring and M is a finitely generated R-module, then $H^i_{\mathfrak{m}}(M)$ is artinian for all $i \geq 0$ (see [2]). Note that, if M is an arbitrary R-module, then $H^i_{\mathfrak{m}}(M)$ is weakly artinian for all $i \geq 0$.

Proposition 3.3. Let (R, \mathfrak{m}) be a local ring and $\sqrt{I+J} = \mathfrak{m}$. Then $H^i_{I,J}(M)/JH^i_{I,J}(M)$ is weakly artinian for all $i \geq 0$.

Proof. It follows from [10, 1.4] that $H^i_{I,J}(M) \cong H^i_{\mathfrak{m},J}(M)$ for all $i \ge 0$. Note that $\operatorname{Supp}(H^i_{\mathfrak{m},J}(M)/JH^i_{\mathfrak{m},J}(M)) \subseteq \{\mathfrak{m}\}$ and then the proof is complete by [5, 2.3 (b)].

Hajikarimi proved in [5, 2.11] that if M is a weakly Laskerian Rmodule of finite dimension d, then $H_I^d(M)$ is weakly artinian. Chu and Wang showed in [3, 2.1] that in a local ring and M is finitely generated with dim M = d, the module $H_{I,J}^d(M)$ is artinian. Now we give an extension of these results in the case M is weakly Laskerian.

Theorem 3.4. Let M be a weakly Laskerian R-module with dim $M = d < \infty$. Then $H^d_{L,I}(M)/JH^d_{L,I}(M)$ is weakly artinian.

Proof. We prove by induction on d. If d = 0, then $\operatorname{Ass}(M) \subseteq \operatorname{Max}(R)$. Moreover, $\operatorname{Ass}(M)$ is a finite set since M is weakly Laskerian. By [5, 2.3 (b)], M is weakly artinian and then $H^0_{I,J}(M)/JH^0_{I,J}(M)$ is weakly artinian.

Let d > 0. The short exact sequence

$$0 \to \Gamma_J(M) \to M \to M/\Gamma_J(M) \to 0$$

induces an exact sequence

 $H^d_{I,J}(\Gamma_J(M)) \to H^d_{I,J}(M) \to H^d_{I,J}(M/\Gamma_J(M)) \to 0.$

By [10, 2.5], $H^d_{I,J}(\Gamma_J(M)) \cong H^d_I(\Gamma_J(M))$. Moreover, $\Gamma_J(M)$ is weakly Lakerian with dim $\Gamma_J(M) \leq d$, hence $H^d_I(\Gamma_J(M))$ is weakly artinian by [5, 2.11].

Let $\overline{M} = M/\Gamma_J(M)$, it is sufficient to show that $H^d_{I,J}(\overline{M})/JH^d_{I,J}(\overline{M})$ is weakly artinian. By 3.1, there is an element $x \in J$ which is \overline{M} regular. Now the short exact sequence

$$0 \to \overline{M} \stackrel{.x}{\to} \overline{M} \to \overline{M}/x\overline{M} \to 0$$

gives rise to a long exact sequence

$$\cdots \to H^{d-1}_{I,J}(\overline{M}/x\overline{M}) \xrightarrow{f} H^{d}_{I,J}(\overline{M}) \xrightarrow{x} H^{d}_{I,J}(\overline{M}) \to 0.$$

Since $\overline{M}/x\overline{M}$ is weakly Laskerian with $\dim(\overline{M}/x\overline{M}) \leq d-1$, we conclude that $H_{I,J}^{d-1}(\overline{M}/x\overline{M})/JH_{I,J}^{d-1}(\overline{M}/x\overline{M})$ is weakly artinian by the inductive hypothesis. The short exact sequence

$$0 \to \operatorname{Im} f \to H^d_{I,J}(\overline{M}) \stackrel{\cdot x}{\to} H^d_{I,J}(\overline{M}) \to 0$$

induces a long exact sequence

 $\cdots \operatorname{Im} f/J \operatorname{Im} f \to H^d_{I,J}(\overline{M})/J H^d_{I,J}(\overline{M}) \xrightarrow{.x} H^d_{I,J}(\overline{M})/J H^d_{I,J}(\overline{M}) \to 0.$

As $x \in J$, it follows that $H^d_{I,J}(\overline{M})/JH^d_{I,J}(\overline{M})$ is a homomorphic image of $\operatorname{Im} f/J\operatorname{Im} f$. But $\operatorname{Im} f/J\operatorname{Im} f$ is weakly artinian by [5, 2.3 (c)]. Hence $H^d_{I,J}(\overline{M})/JH^d_{I,J}(\overline{M})$ is weakly artinian.

From the proof of 3.4 (i), we see that if $\dim(M/\Gamma_J(M)) < \dim M$, then $H_{I,J}^{\dim M}(M)$ is weakly artinian.

Corollary 3.5. Let M be a weakly Laskerian R-module with dim $M = d < \infty$. Then $\text{Supp}(H^d_{I,J}(M)/JH^d_{I,J}(M))$ is finite.

Proposition 3.6. Let M be an R-module and $n \ge 1$ an integer such that $\operatorname{Supp}(H^i_{I,J}(M)) \subseteq \operatorname{Max}(R)$ for all i < n. If $\operatorname{Ext}^1_R(R/I, JH^i_{I,J}(M))$ and $\operatorname{Ext}^i_R(R/I, M)$ are weakly Laskerian for all i < n, then $H^i_{I,J}(M)/JH^i_{I,J}(M)$ is weakly artinian for all i < n.

Proof. We prove by induction on n. Let n = 1, since $\operatorname{Supp}_R(H^0_{I,J}(M)) \subseteq \operatorname{Max}(R)$ and $0:_{\Gamma_{I,J}(M)} I$ is weakly Laskerian, by $[5, 2.3(v)] \ 0:_{\Gamma_{I,J}(M)} I$ is weakly artinian. The short exact sequence

$$0 \to J\Gamma_{I,J}(M) \to \Gamma_{I,J}(M) \to \Gamma_{I,J}(M) / J\Gamma_{I,J}(M) \to 0$$

induces the following exact sequence

 \cdots Hom_R $(R/I, \Gamma_{I,J}(M)) \rightarrow$ Hom_R $(R/I, \Gamma_{I,J}(M)/J\Gamma_{I,J}(M))$

10 TRAN TUAN NAM, NGUYEN MINH TRI and NGUYEN THANH NAM

 $\rightarrow \operatorname{Ext}^{1}_{R}(R/I, J\Gamma_{I,J}(M)) \rightarrow \operatorname{Ext}^{1}_{R}(R/I, \Gamma_{I,J}(M)) \rightarrow \cdots$

Note that the support of $\operatorname{Ext}_{R}^{1}(R/I, J\Gamma_{I,J}(M))$ is contained in $\operatorname{Max}(R)$ and it is weakly Laskerian. Therefore, $\operatorname{Ext}_{R}^{1}(R/I, J\Gamma_{I,J}(M))$ is weakly artinian by [5, 2.3(v)]. This implies that $\operatorname{Hom}_{R}(R/I, \Gamma_{I,J}(M)/J\Gamma_{I,J}(M))$ is weakly artinian. Moreover, $\Gamma_{I,J}(M)/J\Gamma_{I,J}(M)$ is an *I*-torsion *R*module, it follows from [5, 2.8] that $\Gamma_{I,J}(M)/J\Gamma_{I,J}(M)$ is weakly artinian.

Let n > 1 and assume that the statement is true for all i < n - 1. It follows from [10, 1.13(4)] that $H_{I,J}^{n-1}(M) \cong H_{I,J}^{n-1}(M/\Gamma_{I,J}(M))$. Now let $\overline{M} = M/\Gamma_{I,J}(M)$ and $E = E(\overline{M})$ be an injective hull of \overline{M} . Note that E is an I-torsion-free R-module and $\operatorname{Supp}_R(H_{I,J}^{n-1}(M)) \subseteq \operatorname{Max}(R)$. The short exact sequence

$$0 \to \overline{M} \to E \to E/\overline{M} \to 0$$

gives that

$$H^{n-2}_{I,J}(E/\overline{M}) \cong H^{n-1}_{I,J}(\overline{M})$$

and

$$\operatorname{Ext}_{R}^{i}(R/I, E/\overline{M}) \cong \operatorname{Ext}_{R}^{i+1}(R/I, \overline{M})$$

for all $i \geq 0$. Since $\Gamma_{I,J}(M)$ is weakly artinian, by the assumption $\operatorname{Ext}_{R}^{i}(R/I, \overline{M})$ is weakly Laskerian for all i < n. Thus $\operatorname{Ext}_{R}^{i}(R/I, E/\overline{M})$ is weakly Laskerian for all i < n - 1. Now by the inductive hypothesis $H_{I,J}^{n-2}(E/\overline{M})/JH_{I,J}^{n-2}(E/\overline{M})$ is weakly artinian and then the proof is complete.

The following theorem establishes the relationship on the weakly artinianness between $H_I^i(M)$ and $H_{I,J}^i(M)$.

Theorem 3.7. Let M be an R-module and t a non-negative integer. Assume that $H^i_{I,J}(M)$ is weakly artinian for all i < t. Then we have the following statements.

- (i) $H^i_{\mathfrak{a}}(M)$ is weakly artinian for all i < t and $\mathfrak{a} \in \tilde{W}(I, J)$.
- (ii) $\operatorname{Ext}^{i}_{B}(R/\mathfrak{a}, M)$ is weakly artinian for all i < t and $\mathfrak{a} \in \tilde{W}(I, J)$.

Proof. (i) By [8, 10.47] there is a Grothendieck spectral sequence

$$E_2^{p,q} = H^p_{\mathfrak{a}}(H^q_{I,J}(M)) \underset{p}{\Rightarrow} H^{p+q}_{\mathfrak{a}}(M).$$

Let n < t, there is a filtration Φ^i of $H^n = H^n_{\mathfrak{a}}(M)$

$$0 = \Phi^{n+1}H^n \subseteq \Phi^n H^n \subseteq \ldots \subseteq \Phi^1 H^n \subseteq \Phi^0 H^n = H^n_{\mathfrak{a}}(M)$$

such that

$$E_{\infty}^{i,n-i} \cong \Phi^i H^n / \Phi^{i+1} H^n.$$

Since $H_{I,J}^q(M)$ is weakly artinian for all q < t, we get dim $H_{I,J}^q(M) = 0$ for all q < t and then $E_2^{p,q} = 0$ for all q < t and p > 0. Hence $E_{\infty}^{p,q} = 0$ for all q < t and p > 0. Hence $E_{\infty}^{p,q} = 0$ for all q < t and p > 0. This implies that

$$\Phi^1 H^n = \Phi^2 H^n = \ldots = \Phi^{n+1} H^n = 0$$

for all n < t. By the assumption, $E_2^{0,n} = \Gamma_{\mathfrak{a}}(H_{I,J}^n(M))$ is weakly artinian for all n < t. We consider the homomorphisms of the spectral sequence

$$0 = E_r^{-r,n+r-1} \to E_r^{0,n} \to E_r^{r,n-r+1} = 0$$

for all $r \geq 2$. It follows that

$$E_2^{0,n} = E_3^{0,n} = \ldots = E_\infty^{0,n}$$

Now the short exact sequence

$$0 \to \Phi^1 H^n \to H^n_{\mathfrak{a}}(M) \to E^{0,n}_\infty \to 0$$

induces that $H^n_{\mathfrak{a}}(M) \cong \Gamma_{\mathfrak{a}}(H^n_{I,J}(M))$ for all n < t, and the proof is complete.

(ii) By [8, 10.47] there is a Grothendieck spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(R/\mathfrak{a}, H^q_{I,J}(M)) \Longrightarrow_p \operatorname{Ext}_R^{p+q}(R/\mathfrak{a}, M).$$

Let n < t, there are isomorphisms

$$E_{\infty}^{i,n-i} \cong \Phi^i H^n / \Phi^{i+1} H^n$$

for all $i \leq n$ and $H^n = \operatorname{Ext}_R^n(R/\mathfrak{a}, M)$. By the hypothesis $E_2^{i,n-i}$ is weakly artinian for all $i \leq n$. Since $E_{\infty}^{i,n-i}$ is a subquotient of $E_2^{i,n-i}$, $E_{\infty}^{i,n-i}$ is weakly artinian. It should be mentioned that

$$E_{\infty}^{n-1,1} \cong \Phi^{n-1} H^n / \Phi^n H^n \cong \Phi^{n-1} H^n / E_{\infty}^{n,0}.$$

Then $\Phi^{n-1}H^n$ is weakly artinian. By descending induction, we conclude that $\Phi^{n-2}H^n, \ldots, \Phi^0H^n$ are weakly artinian which completes the proof.

Proposition 3.8. Let M be a finitely generated R-module and t a non-negative integer. Assume that $H^i_{I,J}(R/\mathfrak{p})$ is weakly artinian for all $\mathfrak{p} \in \operatorname{Supp}(M)$ for all i < t. Then $H^i_{I,J}(M)$ is weakly artinian for all i < t.

Proof. Since M is finitely generated, there is a filtration of submodules of M

$$0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_n = M$$

such that $M_j/M_{j-1} \cong R/\mathfrak{p}_j$ for some $\mathfrak{p}_j \in \operatorname{Supp}(M)$. The short exact sequence

$$0 \to M_{j-1} \to M_j \to R/\mathfrak{p}_j \to 0$$

induces a long exact sequence

 $\cdots \to H^i_{I,J}(M_{j-1}) \to H^i_{I,J}(M_j) \to H^i_{I,J}(R/\mathfrak{p}_j) \to \cdots$

By induction on j, we conclude that $H^i_{I,J}(M)$ is weakly artinian for all i < t.

The weakly filter regular sequence has been introduced in [5] as an extension of filter regular sequence. We will give a connection between the length of weakly filter regular sequence and weakly artinianness of $H^i_{I,J}(M)$.

Definition 3.9. ([5, 3.1]) Let (R, \mathfrak{m}) be a local ring, M an R-module and x_1, \ldots, x_n a sequence of elements in \mathfrak{m} . We say that x_1, \ldots, x_n is a weakly filter M-regular sequence if for each $i = 1, \ldots, n$, the module $0:_{M/(x_1,\ldots,x_{i-1})M} x_i$ is weakly artinian.

Definition 3.10. ([5, 3.5]) The weakly filter depth of \mathfrak{a} on M is defined as the length of any maximal weakly filter M-regular sequence in \mathfrak{a} , denoted by w - f-depth(\mathfrak{a}, M).

Now we can characterize $w - f - \operatorname{depth}(\mathfrak{a}, M)$ by the weakly artinianness of $H^i_{I,J}(M)$.

Theorem 3.11. Let (R, \mathfrak{m}) be a local ring and M a weakly Laskerian R-module. Then

$$\inf\{w - f - depth(\mathfrak{a}, M) \mid \mathfrak{a} \in W(I, J)\} = \inf\{i \mid H^{i}_{I,J}(M) \text{ is not weakly artinian}\}$$
$$= \inf\{i \mid H^{i}_{I,J}(M) \not\cong H^{i}_{\mathfrak{m},J}(M)\}$$
$$= \inf\{i \mid H^{i}_{I,J}(M) \not\cong H^{i}_{\mathfrak{m}}(M)\}.$$

Proof. Let us prove the first equality. Set $n = \inf\{w - f - \operatorname{depth}(\mathfrak{a}, M) \mid \mathfrak{a} \in \tilde{W}(I, J)\}$. It follows from [4, 2.3] that $H^i_{\mathfrak{a}}(M)$ is weakly artinian for all i < n and for all $\mathfrak{a} \in \tilde{W}(I, J)$. Note that $H^i_{I,J}(M) \cong \varinjlim_{\mathfrak{a} \in \tilde{W}(I, J)} H^i_{\mathfrak{a}}(M)$

by [10, 3.2]. We have by [9, 2.1] that

$$\operatorname{Ass}(H^{i}_{I,J}(M)) \subseteq \bigcup_{\mathfrak{a}\in \tilde{W}(I,J)} \operatorname{Ass}(H^{i}_{\mathfrak{a}}(M)).$$

Since $\operatorname{Ass}(H^i_{\mathfrak{a}}(M)) \subseteq \{\mathfrak{m}\}$ for all i < n and $\mathfrak{a} \in W(I, J)$, we see that $\operatorname{Ass}(H^i_{I,J}(M)) \subseteq \{\mathfrak{m}\}$ for all i < n. Thus $H^i_{I,J}(M)$ is weakly artinian for all i < n and then $n \leq \inf\{i \mid H^i_{I,J}(M) \text{ is not weakly artinian}\}.$

Let $k = \inf\{i \mid H_{I,J}^{i}(M) \text{ is not weakly artinian}\}$, it remains to prove that $k \leq n$. Suppose, contrary to our claim, that k > n. Therefore $H_{I,J}^{n}(M)$ is weakly artinian. It follows from 3.7 (ii) that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ is weakly artinian for all $i \leq n$. By [5, 3.3], \mathfrak{a} contains a weakly filter *M*-regular sequence of length greater *n* for all $\mathfrak{a} \in W(I, J)$. Hence $n < \inf\{w - f - \operatorname{depth}(\mathfrak{a}, M) \mid \mathfrak{a} \in \tilde{W}(I, J)\}$, a contradiction. Thus, we have the first equality.

The remain equalities follow from [6, 2.7], note that the module $H^i_{I,J}(M)$ is not weakly artinian if and only if $\operatorname{Supp}(H^i_{I,J}(M)) \not\subseteq \{\mathfrak{m}\}$.

References

- A. Abbasi, H. Roshan-Shekalguorabi, Rasht, A generalization of the finiteness problem of the local cohomology modules, *Czechoslovak Math.* J., 64(139) (2014) 69-78.
- [2] M. P. Brodmann and R. Y. Sharp, Local cohomology An algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- [3] L. Chu, Q. Wang, Some results on local cohomology modules defined by a pair of ideals, J. *Math. Kyoto Univ.* **49** (2009) 193-200.
- [4] Y. Gu, On the weakly artinianness and minimax generalized local cohomology modules, Bull. Korean Math. Soc. 50(6) (2013) 1855-1861.
- [5] A. Hajikarimi, Local cohomology modules which are supported only at finitely many maximal ideals, J. Korean Math. Soc. 47(3) (2010) 633-643.
- [6] N. M. Tri, N. T. Nam, T. T. Nam and N. D. Minh, On the finiteness of associated primes of local cohomology modules, *Publ. Math. Debrecen* 94(1-2) (2019) 21-30.
- [7] T. T. Nam, N. M. Tri, Some results on local cohomology modules with respect to a pair of ideals, *Taiwanese J. Math.* 20(4) (2016), 743-753.
- [8] J. Rotman, An introduction to homological algebra, 2nd edition, Springer, 2009.
- [9] A. K. Singh, I. Swanson, Associated primes of local cohomology modules and of Frobenius powers, *Int. Math. Res. Not.* 33 (2004) 1703-1733.
- [10] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, *J. Pure. Appl. Algebra.* 213 (2009) 582-600.

¹DEPARTMENT OF MATHEMATICS-INFORMATICS, HO CHI MINH UNIVERSITY OF PEDAGOGY, HO CHI MINH CITY, VIETNAM

E-mail address: namtuantran@gmail.com, namtt@hcmue.edu.vn

 $^2\mathrm{Algebra}$ and Geometry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

14 TRAN TUAN NAM, NGUYEN MINH TRI and NGUYEN THANH NAM

 $^3{\rm Faculty}$ of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

E-mail address: nguyenminhtri@tdtu.edu.vn

⁴FACULTY OF MATHEMATICS & COMPUTER SCIENCE, UNIVERSITY OF SCIENCE, VNU-HCM, HO CHI MINH CITY, VIETNAM E-mail address: hoanam8779@gmail.com