HIGH PERORMANCE SERS SUBSTRATE BASED ON NANO SILVER AND GOLD PARTICLES DECORATED ON 3D SEMICONDUCTOR NANO STRUCTURES (ZnO NANORODS AND PYRAMID Si) FOR DETECTING RESIDUAL PESTICIDE

Tran Thị Thanh Van^a, Nguyen Ha Thanh^a, Nguyen Hoang Long^a, Phan Thi Kieu Loan^a, Dao Anh Tuan^a, Nguyen Duy Khanh^a, Nguyen Huu Ke^a, Nguyen Huong Giang^c, Nguyen The Thuong^b, Vũ Thị Hạnh Thu^a, Lam Quang Vinh^a, Le Vu Tuan Hung^a.

a) University of Science, VNU-HCM, 227 Nguyen Van Cu street, District 5, HCMC.

 b) Institute of biomedical physics, 109A Pasteur, Ben Nghe, District 1, HCMC Email: lvthung@hcmus.edu.vn

Abstract: In this study, we developed SERS substrate based on nano Ag and Au - decorated on 3D semiconductor structures, including ZnO nanorod (NRs) array and pyramid-Si substrates. The effective transfer of electron between 3D semiconductor substrates and molecular, the enhancement of plasmon surface from the density with "hot spot" and size of Ag/Au nano particles were investigated. The SERS substrates gave an analytical enhancement factor (EF) more than $10^6 - 10^7$ and could detect Rhodamine 6G (R6G) at concentrations less than 10^{-11} M, and Abamectin at very low concentration 0,01 ppm.

Keywords: SERS, The enhancement factor EF, ZnO NRs, Si-pyramid, Rhodamine 6G, Abamectin