New Hardy spaces of Musielak-Orlicz type and some related problems

Luong Dang Ky

Department of Mathematics, Quynhon University

Sai Gon, 18 December 2020

- New Hardy spaces of Musielak-Orlicz type
 - Hardy spaces H^p
 - On the product of functions in $H^1(\mathbb{R})$ and $BMO(\mathbb{R})$
 - New Hardy spaces of Musielak-Orlicz type

- 2 Commutators of singular integral operators
 - Unweighted estimates for commutators of SIOs
 - Weighted estimates for commutators of SIOs

Holomorphic Hardy spaces $\mathcal{H}^p(\mathbb{D})$

Definition 1.1 (Hardy¹ and Riesz²)

Let $0 . The Hardy space <math>\mathcal{H}^p(\mathbb{D})$ is defined as the space of holomorphic functions f on \mathbb{D} such that

$$\|f\|_{\mathcal{H}^p(\mathbb{D})}:=\sup_{0< r<1}\left[rac{1}{2\pi}\int_0^{2\pi}|f(r\mathrm{e}^{i heta})|^pd heta
ight]^{1/p}<\infty.$$

When $p=\infty$, the Hardy space $\mathcal{H}^{\infty}(\mathbb{D})$ is then defined as the space of bounded holomorphic functions f on \mathbb{D} with

$$||f||_{\mathcal{H}^{\infty}(\mathbb{D})} := \sup_{z \in \mathbb{D}} |f(z)|.$$

¹G. H. Hardy, The mean value of the modulus of an analytic function. Proc. London Math. Soc., 14(2) (1915), 269-277.

²F. Riesz, Über die Randwerte einer analytischen Funktion. Math. Z. 18 (1923), no. 1, 87-95.

Holomorphic Hardy spaces $\mathcal{H}^p(\mathbb{C}_+)$

Definition 1.2 (Stein-Weiss³)

Let $0 . The Hardy space <math>\mathcal{H}^p(\mathbb{C}_+)$ is defined as the space of holomorphic functions f on \mathbb{C}_+ such that

$$||f||_{\mathcal{H}^p(\mathbb{C}_+)} := \sup_{y>0} \left[\int_{-\infty}^{\infty} |f(x+iy)|^p dx \right]^{1/p} < \infty.$$

When $p = \infty$, the Hardy space $\mathcal{H}^{\infty}(\mathbb{C}_+)$ is then defined as the space of bounded holomorphic functions f on \mathbb{C}_+ with

$$||f||_{\mathcal{H}^{\infty}(\mathbb{C}_{+})} := \sup_{z \in \mathbb{C}_{+}} |f(z)|.$$

 $^{^{3}}$ E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I: The theory of H^{p} spaces. Acta Math., 103 (1960), 26-62.

The dual spaces of H^p

Theorem 1.3

Let 1 and <math>1/q + 1/p = 1. Then, the dual space of $\mathcal{H}^p(\mathbb{C}_+)$ is $\mathcal{H}^q(\mathbb{C}_+)$.

A natural question is that:

Question 1.1

$$(\mathcal{H}^1(\mathbb{C}_+))^* = \mathcal{H}^\infty(\mathbb{C}_+)$$
?

The real Hardy space $H^1(\mathbb{R})$

Denote by $P(t)=\frac{1}{1+t^2}$, $t\in\mathbb{R}$, the Poisson kernel on \mathbb{R} and $P_y(t)=\frac{1}{y}P(t/y)$, y>0. The real Hardy space $H^1(\mathbb{R})$ is then defined as the set of measurable functions $f:\mathbb{R}\to\mathbb{R}$ such that

$$||f||_{H^1(\mathbb{R})} := ||\mathcal{M}f||_{L^1} < \infty,$$

where $\mathcal{M}f(x) := \sup_{|t-x| < y} |P_y * f(t)|$ for every $x \in \mathbb{R}$.

Theorem 1.4 (Burkholder-Gundy-Silverstein 4)

 $F(z)\in \mathcal{H}^1(\mathbb{C}_+)$ iff there exists a function $f(t)\in H^1(\mathbb{R})$ such that

$$F(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(t)}{z - t} dt.$$

 $^{^4}$ D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class H^p . Trans. Amer. Math. Soc. 157 (1971), 137-153.

The dual space of $H^1(\mathbb{R})$

Definition 1.5 (John-Nirenberg⁵)

A function $f \in L^1_{\mathrm{loc}}(\mathbb{R})$ is said to be in the space $BMO(\mathbb{R})$ if

$$||f||_{BMO(\mathbb{R})} := \sup_{B} \frac{1}{|B|} \int_{B} \left| f(x) - \frac{1}{|B|} \int_{B} f(y) dy \right| dx < \infty,$$

where the supremum is taken over all balls $B \subset \mathbb{R}$.

Theorem 1.6 (Fefferman-Stein⁶)

The space $BMO(\mathbb{R})$ is just the dual space $H^1(\mathbb{R})$.

⁵F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.

 $^{^6}$ C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math., 129 (1972), 137-193.

But this duality is not like the duality $L^p - L^q$. More precisely, product of a function $f \in H^1(\mathbb{R})$ and a function $g \in BMO(\mathbb{R})$ need not be integrable. A natural question is that:

Question 1.2

What can one say about such products?

On the product of functions in $H^1(\mathbb{R})$ and $BMO(\mathbb{R})$

For a function $f \in H^1(\mathbb{R})$ and a function $g \in BMO(\mathbb{R})$, then the product $f \times g$ can be defined as follows

$$\langle f \times g, \phi \rangle = \langle \phi g, f \rangle_{BMO-H^1}, \quad \phi \in \mathcal{S}(\mathbb{R}).$$

Let $H^{\Phi}_w(\mathbb{R})$ be the weighted Hardy-Orlicz space associated with the Orlicz function $\Phi(t) = t/\log(e+t)$ and the Muckenhoupt weight $w(x) = 1/\log(e+|x|)$.

On the product of functions in $H^1(\mathbb{R})$ and $BMO(\mathbb{R})$

Theorem 1.7 (Bonami-Iwaniec-Jones-Zinsmeister⁷)

Let $f \in H^1(\mathbb{R})$. Then, there exist two bounded linear operators $\mathcal{L}_f : BMO(\mathbb{R}) \to L^1(\mathbb{R})$ and $\mathcal{H}_f : BMO(\mathbb{R}) \to H^{\Phi}_w(\mathbb{R})$ such that

$$f \times g = \mathcal{L}_f(g) + \mathcal{H}_f(g), \quad \forall g \in BMO(\mathbb{R}).$$

Conjecture 1.1

There exist two bounded linear operators

$$\mathcal{L}: H^1(\mathbb{R}) imes BMO(\mathbb{R}) o L^1(\mathbb{R})$$
 and

 $\mathcal{H}:H^1(\mathbb{R}) imes BMO(\mathbb{R}) o H^{oldsymbol{\Phi}}_w(\mathbb{R})$ such that

$$f \times g = \mathcal{L}(f,g) + \mathcal{H}(f,g), \quad \forall (f,g) \in H^1(\mathbb{R}) \times BMO(\mathbb{R}).$$

 $^{^{7}}$ A. Bonami, T. Iwaniec, P. Jones, P Zinsmeister, Michel On the product of functions in BMO and H^{1} . Ann. Inst. Fourier (Grenoble) 57 (2007), no. 5, 1405–1439.

On the product of functions in $H^1(\mathbb{R})$ and $BMO(\mathbb{R})$

On the product of functions in $H^1(\mathbb{R})$ and $BMO(\mathbb{R})$

Theorem 1.8 (Bonami-Grellier-K.8)

There exist two bounded linear operators

$$\mathcal{L}: H^1(\mathbb{R}) imes BMO(\mathbb{R}) o L^1(\mathbb{R})$$
 and

 $\mathcal{H}:H^1(\mathbb{R}) imes BMO(\mathbb{R}) o H^{log}(\mathbb{R})$ such that

$$f \times g = \mathcal{L}(f,g) + \mathcal{H}(f,g), \quad \forall (f,g) \in H^1(\mathbb{R}) \times BMO(\mathbb{R}).$$

Here the space $H^{\log}(\mathbb{R})$ is a new Hardy space of Musielak-Orlicz type associated with the Musielak-Orlicz function

$$\varphi(x, t) = \frac{t}{\log(e+t) + \log(e+|x|)}$$
.

 $^{^8}$ A. Bonami, S. Grellier and L. D. Ky, Paraproducts and products of functions in $BMO(\mathbb{R}^n)$ and $H^1(\mathbb{R}^n)$ through wavelets. J. Math. Pures Appl. (9) 97 (2012), no. 3, 230–241.

 $^{^9}$ A. Bonami, J. Cao, L. D. Ky, L. Liu, D. Yang and W. Yuan, Multiplication between Hardy spaces and their dual spaces. J. Math. Pures Appl. (9) 131 (2019), 130–170.

New Hardy spaces of Musielak-Orlicz type

- $\varphi: \mathbb{R} \times [0, \infty)$ is said to be a Musielak-Orlicz function if
 - \circ $\varphi(x,\cdot)$ is an Orlicz function satisfying

$$\varphi(x, st) \leq Cs^p \varphi(x, t), \quad \forall x \in \mathbb{R}, s \in (0, 1], t \in [0, \infty),$$

where 0 , and

$$\varphi(x, st) \leq Cs\varphi(x, t), \quad \forall x \in \mathbb{R}, s \in [1, \infty), t \in [0, \infty).$$

 $\phi(\cdot,t)$ is a Muckenhoupt weight in A_q $(1 < q < \infty)$, that is

$$\frac{1}{|B|} \int_{B} \varphi(x,t) dx \left(\frac{1}{|B|} (\varphi(x,t))^{-\frac{1}{q-1}} dx \right)^{q-1} \leq C$$

for all $t \geq 0$ and interval $B \subset \mathbb{R}$.

New Hardy spaces of Musielak-Orlicz type

New Hardy spaces of Musielak-Orlicz type

Definition 1.9 (K.¹⁰)

Let $\varphi: \mathbb{R} \times [0,\infty)$ be a Musielak-Orlicz function. The Musielak-Orlicz Hardy space $H^{\varphi}(\mathbb{R})$ is then defined as the completion of $\{f \in L^2(\mathbb{R}) : \mathcal{M}f \in L^{\varphi}(\mathbb{R})\}$ in the norm

$$||f||_{H^{\varphi}(\mathbb{R})}:=||\mathcal{M}f||_{L^{\varphi}(\mathbb{R})}<\infty.$$

¹⁰L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory 78 (2014), no. 1, 115–150.

New Hardy spaces of Musielak-Orlicz type

A bounded function a is a φ -atom if

- i) supp $a \subset B$ for some ball B,
- ii) $||a||_{L^{\infty}} \leq ||\chi_B||_{L^{\varphi}}^{-1}$,
- iii) $\int_{\mathbb{R}} a(x)x^{\alpha}dx = 0$ for any $|\alpha| \leq m(\varphi)$.

We next define the atomic Hardy space of Musielak-Orlicz type $H^{\varphi(\cdot,\cdot)}_{\mathrm{at}}(\mathbb{R})$ as those distributions $f\in\mathcal{S}'(\mathbb{R})$ such that $f=\sum_j b_j$ (in the sense of $\mathcal{S}'(\mathbb{R})$), where b_j 's are multiples of φ -atoms supported in the balls B_j 's, with the property $\sum_j \varphi(B_j,\|b_j\|_{L^\infty})<\infty$; and define the norm of f by

$$\|f\|_{H^{arphi(\cdot,\cdot)}_{
m at}}=\inf\Big\{\Lambda_{\infty}(\{b_j\}): f=\sum_j b_j \quad ext{in the sense of } \, \mathcal{S}'(\mathbb{R})\Big\},$$

where $\Lambda_{\infty}(\{b_j\}) = \inf \left\{ \lambda > 0 : \sum_j \varphi \left(B_j, \frac{\|b_j\|_{L^{\infty}}}{\lambda} \right) \leq 1 \right\}$ with $\varphi(B,t) := \int_B \varphi(x,t) dx$ for all $t \geq 0$ and B is measurable.

New Hardy spaces of Musielak-Orlicz type

New Hardy spaces of Musielak-Orlicz type

Theorem 1.10 (K.¹⁰)

 $H^{\varphi(\cdot,\cdot)}_{
m at}(\mathbb{R})=H^{\varphi(\cdot,\cdot)}(\mathbb{R})$ with equivalent norms.

¹⁰L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory 78 (2014), no. 1, 115–150.

¹¹D. Yang, Y. Liang and L. D. Ky, Real-variable theory of Musielak-Orlicz Hardy spaces. Lecture Notes in Mathematics, 2182. Springer, Cham, 2017.

Let $\delta \in (0,1]$. A bounded linear operator $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is said to be a δ -Calderón-Zygmund singular integral operator (SIO) if T can be written as

$$Tf(x) = \int_{\mathbb{R}} K(x, y) f(y) dy$$

for all $f \in C_c(\mathbb{R})$ and $x \notin \text{supp } f$, where $K : \mathbb{R} \times \mathbb{R} \setminus \{(x,x) : x \in \mathbb{R}\} \to \mathbb{C}$ satisfies $|K(x,y)| \leq \frac{C}{|x-y|}$ and

$$|K(x,y) - K(x',y)| + |K(y,x) - K(y,x')| \le C \frac{|x-x'|^{\delta}}{|x-y|^{1+\delta}}$$

for all $2|x - x'| \le |x - y|$.

¹²A. P. Calderón and A. Zygmund, On the existence of certain singular integrals. Acta Math. 88 (1952), 85–139.

Unweighted estimates for commutators of SIOs

Let $b \in L^1_{loc}(\mathbb{R})$, we define the commutator

$$[b,T](f):=bTf-T(bf).$$

Theorem 2.1 (Coifman-Rochberg-Weiss¹³)

Let $b \in BMO(\mathbb{R})$. Then, for every $p \in (1, \infty)$, the commutator [b, T] is bounded on $L^p(\mathbb{R})$.

 $^{^{13}}$ R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103 (1976), no. 3, 611–635.

A bounded function a is a H_b^1 -atom if

- i) supp $a \subset B$ for some ball B,
- ii) $||a||_{L^{\infty}} \leq |B|^{-1}$,
- iii) $\int_{\mathbb{R}} a(x)dx = \int_{\mathbb{R}} a(x)b(x)dx = 0.$

Following Pérez¹², we define the Hardy space $H_b^1(\mathbb{R})$ as those functions $f \in L^1(\mathbb{R})$ such that $f = \sum_j \lambda_j a_j$, where a_j 's are H_b^1 -atoms and $\sum_{j=1}^{\infty} |\lambda_j| < \infty$. The norm on $H_b^1(\mathbb{R})$ is then defined by

$$\|f\|_{H^1_b}:=\inf\left\{\sum_{j=1}^\infty |\lambda_j|: f=\sum_j \lambda_j a_j
ight\}.$$

Theorem 2.2 (Pérez¹⁴)

Let $b \in BMO(\mathbb{R})$. Then, [b, T] is bounded from $H_b^1(\mathbb{R})$ into $L^1(\mathbb{R})$.

We define $\mathcal{H}^1_b(\mathbb{R})$ as the set of functions $f \in H^1(\mathbb{R})$ such that $\|f\|_{\mathcal{H}^1_b} := \|f\|_{H^1} \|b\|_{BMO} + \|[b,H](f)\|_{L^1} < \infty.$

Theorem 2.3 (K.15)

Let $b \in BMO(\mathbb{R})$. Then, [b, T] is bounded from $\mathcal{H}^1_b(\mathbb{R})$ into $L^1(\mathbb{R})$ for every Calderón-Zygmund singular integral operator T. Furthermore, $\mathcal{H}^1_b(\mathbb{R})$ is the largest space having this property.

¹⁴C. Pérez, Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128 (1995), 163–185.

¹⁵L. D. Ky, Bilinear decompositions and commutators of singular integral operators. Trans. Amer. Math. Soc. 365 (2013), no. 6, 2931–2958.

Let $w \in A_{\infty}(\mathbb{R})$ and $\int_{\mathbb{R}} \frac{w(x)}{1+|x|} dx < \infty$. A locally integrable function b is said to be in $\mathcal{BMO}_w(\mathbb{R})$ if

$$||b||_{\mathcal{BMO}_{w}} := \sup_{B \subset \mathbb{R}} \left\{ \frac{1}{w(B)} \left[\int_{B^{c}} \frac{w(x)}{|x - x_{B}|} dx \right] \left[\int_{B} |b(y) - b_{B}| dy \right] \right\} < \infty$$

Theorem 2.4 (Liang-K.-Yang¹⁶)

Let $\delta \in (0,1]$, $w \in A_{1+\delta}(\mathbb{R})$ satisfy $\int_{\mathbb{R}} \frac{w(x)}{1+|x|} dx < \infty$ and $b \in \mathcal{BMO}_w(\mathbb{R})$. Then, for every δ -Calderón-Zygmund operator T, the commutator [b,T] is bounded from $H^1_w(\mathbb{R})$ into $L^1_w(\mathbb{R})$

¹⁶Y. Liang, L. D. Ky and D. Yang, Weighted endpoint estimates for commutators of Calderón-Zygmund operators. Proc. Amer. Math. Soc. 144 (2016), no. 12, 5171–5181.

Thank you very much for your attention!