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Abstract. In this talk we study the existence of multiple solutions for the following
problem: {

−div
(
w(x)|∇u|p(x)−2∇u

)
= f(x, u) in Ω,

u = 0 on ∂Ω,
(P)

where Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, p : Ω→ (1,∞) is a
continuous function, w is a weighted function in Ω and f is a Carathéodory function.
Firstly, using a critical point theorem of Kajikiya (2005) together with an a-priori
bound of solutions we obtain a sequence of solutions tending to zero under a p(·)-
sublinear growth condition of nonlinearity. Secondly, for a p(·)-superlinear growth
condition, we obtain a sequence of solutions tending to infinity when nonlinear term
satisfies a condition called Ambrosetti-Rabinowitz type using genus theory.

This is based on a joint work with Ky Ho (Institute of Applied Mathematics,
University of Economics Ho Chi Minh City).
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