Title: Regularity theory for second order partial differential equation arising from composite material

Authors: Nguyen Huyen-Thu Ho, Bach Ngoc-My Nguyen, Quoc-Hung Nguyen, Vu Tien-Anh Nguyen, Ngoc-Huy Pham, Minh-Nguyen Tran, Quang-Minh Tran and Tuan-Dat Tran.

Abstract: We establish a new theory of regularity for second order partial differential equation arising from composite material:

$$
\left\{\begin{array}{c}
-\operatorname{div}(A \nabla u)+\lambda u=f \text { in } \Omega, \tag{0.1}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

where $\lambda \geq 0$;
(i) Ω, Ω_{1} are smooth bounded simply connected open subsets of \mathbb{R}^{d} with $d \geq 2$ satisfying $\Omega_{1} \subset \subset$ Ω, and $\Omega_{2}=\Omega \backslash \bar{\Omega}_{1}$;
(ii) A is given by

$$
A(x)=\left\{\begin{array}{l}
A_{1}(x) \text { in } \Omega_{1}, \\
-A_{2}(x) \text { in } \Omega_{2}
\end{array}\right.
$$

A_{1}, A_{2} are two real, symmetric matrix-valued functions in Ω_{1} and Ω_{2} respectively satisfying uniformly elliptic i.e for some constant $\Lambda \geq 1$, one has, for $j=1,2$,

$$
\begin{equation*}
\Lambda^{-1}|\xi|^{2} \leq\left\langle A_{j}(x) \xi, \xi\right\rangle \leq \Lambda|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{d}, \text { for a.e. } x \in \Omega_{j} . \tag{0.2}
\end{equation*}
$$

Our work is stimulated by the study of composite media with closely spaced interfacial boundaries see [5. Since A is not elliptic, a priori estimates of (0.1) are non-standard and do not hold in general. In this paper, we develop a new method to show existence and regularity of solutions to (0.1). It is based on the Fourier analysis and Calderón-Zygmund theory. Namely, we prove that

Theorem 1. If $A_{1}, A_{2} \in C^{1}(\bar{\Omega})$ satisfy the following conditions, with respect to $e=\nu(x)$, $x \in \partial \Omega_{1}$

$$
\left\langle A_{2}(x) e, e\right\rangle\left\langle A_{2}(x) \xi, \xi\right\rangle-\left\langle A_{2}(x) e, \xi\right\rangle^{2} \neq\left\langle A_{1}(x) e, e\right\rangle\left\langle A_{1}(x) \xi, \xi\right\rangle-\left\langle A_{1}(x) e, \xi\right\rangle^{2}
$$

and

$$
\left\langle A_{2}(x) e, e\right\rangle \neq\left\langle A_{1}(x) e, e\right\rangle
$$

for any $\xi \in \mathcal{P}(x) \backslash\{0\}$ where $\nu(x)$ denotes the outward normal unit vector on $\partial \Omega_{1}$ at x,

$$
\mathcal{P}(x):=\left\{\xi \in \mathbb{R}^{d} ;\langle\xi, e\rangle=0\right\} .
$$

There exists $\lambda_{0}>0$ such that for any $f \in L^{p}(\Omega), 1<p<\infty$ and $\lambda \geq \lambda_{0}$, then the equation (0.1) admits a unique solution u in $W^{2, p}\left(\Omega_{1} \cup \Omega_{2}\right) \cap W_{0}^{1, p}(\Omega)$ satisfying

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L^{p}\left(\Omega_{1} \cup \Omega_{2}\right)}+\lambda\|u\|_{L^{p}} \lesssim\|f\|_{L^{p}(\Omega)} . \tag{0.3}
\end{equation*}
$$

In particular, if $p>\frac{d}{2}$,

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}(\Omega)} \lesssim \lambda^{\frac{d}{2 p}-\frac{1}{2}}\|f\|_{L^{p}(\Omega)} . \tag{0.4}
\end{equation*}
$$

Moreover, if $A_{1}, A_{2} \in C^{\alpha}$ for $\alpha \in(0,1)$, then

$$
\begin{equation*}
\left\|D^{2} u\right\|_{C^{\alpha}\left(\Omega_{1} \cup \Omega_{2}\right)}+\lambda\|u\|_{C^{\alpha}(\Omega)} \lesssim\|f\|_{C^{\alpha}(\Omega)} . \tag{0.5}
\end{equation*}
$$

Note that (0.3) and (0.5) is well known when A is uniformly elliptic, see [1, 3, 4, 5. We also show that the conditions on A_{1}, A_{2} in Theorem 1 are necessary and sufficient for estimates (0.3) and (0.5) .

Natural and interesting questions on the composite material/inverse scattering theory include discreteness of the spectrum, the Weyl law of eigenvalues and the completeness of the eigenfunctions to the following equation: for $\lambda \in \mathbb{R}$,

$$
\left\{\begin{array}{c}
-\operatorname{div}(A \nabla u)=\lambda u \text { in } \Omega, \tag{0.6}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

We show that if the assumptions of theorem 1 holds then the spectrum of 0.6 is discrete, the completeness of the generalized eigenfunctions and the Weyl law for transmission eigenvalues of (0.6) holds. More precisely, we have

Theorem 2. Assume the assumptions of 1 holds. Then, the spectrum of the problem (0.6) is discrete and the generalized eigenfunctions of (0.6) are complete in $L^{2}(\Omega)$. Moreover, for eigenvalues $\left\{\lambda_{n}\right\}_{n}$ of (0.6) with $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \leq \ldots$, there holds

$$
\begin{equation*}
N(t):=\#\left\{k \in \mathbb{N}:\left|\lambda_{k}\right| \leq t\right\}=\mathbf{c} t^{\frac{d}{2}}+o\left(t^{\frac{d}{2}}\right) \text { as } t \rightarrow+\infty, \tag{0.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{c}=\frac{1}{(2 \pi)^{d}} \sum_{j=1}^{2} \int_{\Omega_{j}}\left|\left\{\xi \in \mathbb{R}^{d}:\left\langle A_{j}(x) \xi, \xi\right\rangle<\Sigma_{j}(x)\right\}\right| d x \tag{0.8}
\end{equation*}
$$

Here for a measurable subset D of \mathbb{R}^{d}, we denote $|D|$ its (Lebesgue) measure.
The proof of theorem (2) is new and based on the L^{p} regularity (0.3) and a subtle application of the spectral theory for the Hilbert Schmidt operators in [2].

References

[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I., Comm. Pure Appl. Math. 17 (1964), 35-92.
[2] S. Agmon, Lectures on elliptic boundary value problems, second ed., American Mathematical Soc., vol 369, 2010.
[3] E. Bonnetier; M. Vogelius. An elliptic regularity result for a composite medium with touching fibers of circular cross-section. SIAM J. Math. Anal. 31 (2000), 651â677.
[4] Y. Li; L. Nirenberg. Estimates for elliptic systems from composite material. Comm. Pure Appl. Math. 56 (2003), 892-925
[5] Y. Li; M. Vogelius. Gradient estimates for solutions to divergence form elliptic equaitons with discontinuous coefficients. Arch. Rational Mech. Anal. 153 (2000), 91-151

Nguyen Huyen-Thu Ho

Email: hnht1211.hcmus@gmail.com
Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen
Van Cu street, District 5,Ho Chi Minh City, Vietnam

Bach Ngoc-My Nguyen

Email: NgocMyNguyenBach@gmail.com
Faculty of Mathematics and Computer Science University of Science, VNU-HCM, 227 Nguyen Van Cu street, District 5, Ho Chi Minh City, Vietnam

Quoc-Hung Nguyen

Email: qhnguyen@shanghaitech.edu.cn
ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China

Vu Tien-Anh Nguyen

Email: nguyenvutienanh1@gmail.com
Faculty of Mathematics and Computer Science University of Science, VNU-HCM, 227 Nguyen
Van Cu street, District 5, Ho Chi Minh City, Vietnam

Ngoc-Huy Pham

Email: cqtk11phamngochuy@gmail.com
Faculty of Mathematics - Informatics, Ho Chi Minh City University of Education, 280 An Duong Vuong street, District 5, Ho Chi Minh City, Vietnam

Minh-Nguyen Tran

Email: minhnguyent1110@gmail.com
Faculty of Mathematics and Computer Science University of Science, VNU-HCM, 227 Nguyen
Van Cu street, District 5, Ho Chi Minh City, Vietnam
Quang-Minh Tran (corresponding author)
Email: tqminh.khtn93@gmail.com
Faculty of Mathematics and Computer Science University of Science, VNU-HCM, 227 Nguyen
Van Cu street, District 5, Ho Chi Minh City, Vietnam

Tuan-Dat Tran

Email: tuandat.maths@gmail.com
Faculty of Mathematics and Computer Science University of Science, VNU-HCM, 227 Nguyen Van Cu street, District 5, Ho Chi Minh City, Vietnam

