VALUATIONS ON POWER SERIES RINGS IN AN ARBITRARY SET OF INDETERMINATES

Tri T. Pham¹*, Phan Thanh Toan², Thieu N. Vo³

¹Faculty of Mathematics and Statistics, Ton Duc Thang University. Email: phamthanhtri@tdtu.edu.vn
²Faculty of Mathematics and Statistics, Ton Duc Thang University. Email: phanthanhtoan@tdtu.edu.vn
³Faculty of Mathematics and Statistics, Ton Duc Thang University. Email: vongocthieu@tdtu.edu.vn

Abstract. Let V be rank one valuation domain with maximal ideal M, v be the valuation associated with V, and X be an indeterminate over V. For a power series $f = \sum_{i=0}^{\infty} a_i X^i$ in $V[[X]]$, define $v^*(f) = \inf \{ v(a_i) | i = 0, 1, 2, \ldots \}$. Then v^* is a valuation on $V[[X]]$. Moreover, $MV[[X]]$ is a prime ideal of $V[[X]]$ and $(V[[X]])_{MV[[X]]}$ is the valuation domain associated with v^*. These results were proved by Arnold and Brewer in 1973. In this talk, we generalize the results to the three types of power series rings $V[[\lambda X]]$, $i = 1, 2, 3$ in an arbitrary set of indeterminates $\chi = \{ X_\lambda \}_{\lambda \in \Lambda}$ over V.

References

