A note on the quenching phenomenon of solutions of semilinear parabolic equations with strong absorptions

Dao Nguyen Anh, Nguyen Van Bay, Nguyen Thi Ngoc Hanh, Tran Minh Hieu

September 29, 2018

Abstract. In this paper, we would like to study the quenching phenomenon of solutions to semilinear parabolic equations with strong absorptions:

$$\begin{cases} u_t - \Delta u + u^{\beta} = 0, & \text{in } \Omega \times (0, \infty), \\ u = 0, & \text{on } \partial \Omega \times (0, \infty), \\ u(x, 0) = u_0(x), & x \in \Omega, \end{cases}$$
(0.1) 1

and

$$\begin{cases} u_t - \Delta u + u^{-\beta} &= 0, \quad \text{in } \Omega \times (0, \infty), \\ u &= 0, \quad \text{on } \partial \Omega \times (0, \infty), \\ u(x, 0) &= u_0(x), \quad x \in \Omega, \end{cases}$$
(0.2)

where $\beta \in (0, 1)$, and Ω is a bounded domain with its boundary smooth enough. We show that any solution of the above equations is extinct after a finite time. Furthermore, we point out an estimate on the stopping time of solutions. Our study is inspired by [1, 2, 3] and their references.

References

- Anh [1] Nguyen Anh Dao & Jesus Ildefonso Diaz, A gradient estimate to a degenerate parabolic equation with a singular absorption term: global and local quenching phenomena, J. Math. Anal. Appl. 437 (2016), 445-473.
- Anh1 [2] Nguyen Anh Dao & Jesus Ildefonso Diaz, The extinction versus the blow-up: Global and non-global existence of solutions of source types of degenerate parabolic equations with a singular absorption, J. Diff. Equa., 263 (2017), 6764-6804.
- DaMon [3] J. Davila & M. Montenegro, Existence and asymptotic behavior for a singular parabolic equation, Trans. Amer. Math. Soc. 357 (2004), 1801-1828.